135 research outputs found

    Synchronous Phase Shift at LHC

    Full text link
    The electron cloud in vacuum pipes of accelerators of positively charged particle beams causes a beam energy loss which could be estimated from the synchronous phase. Measurements done with beams of 75 ns, 50 ns, and 25 ns bunch spacing in the LHC for some fills in 2010 and 2011 show that the average energy loss depends on the total beam intensity in the ring. Later measurements during the scrubbing run with 50 ns beams show the reduction of the electron cloud due to scrubbing. Finally, measurements of the individual bunch phase give us information about the electron cloud build-up inside the batch and from batch to batch.Comment: Presented at ECLOUD'12: Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects, La Biodola, Isola d'Elba, Italy, 5-9 June 201

    Electron cloud buildup and impedance effects on beam dynamics in the future circular e+e− collider and experimental characterization of thin TiZrV vacuum chamber coatings

    Get PDF
    The Future Circular Collider FCC-ee is a study toward a high luminosity electron-positron collider with a centre-of-mass energy from 91 GeV to 365 GeV. Due to the beam parameters and pipe dimensions, collective effects and electron cloud can be very critical aspects for the machine and can represent the main limitations to its performance. An estimation of the electron cloud build up in the main machine components and an impedance model are required to analyze the induced instabilities and to find solutions for their mitigation. Special attention has been given to the resistive wall impedance associated with a layer of nonevaporable getter (NEG) coating on the vacuum chamber required for electron cloud mitigation. The studies presented in this paper will show that minimizing the thickness of this coating layer is mandatory to increase the single bunch instability thresholds in the proposed lepton collider at 45.6 GeV. For this reason, NEG thin films with thicknesses below 250 nm have been investigated by means of numerical simulations to minimize the resistive wall impedance. In parallel, an extensive measurement campaign was performed at CERN to characterize these thin films, with the purpose of finding the minimum effective thickness satisfying vacuum and electron cloud requirements

    Sources of organic matter for inter-tidal consumers in Ascophyllum-shores (Sw Iceland): a multi stable isotope approach.

    Get PDF
    Stable isotopes were used to examine the origin of organic matter in Icelandic Ascophyllum-based habitats, the role of different organic matters in filling intertidal food webs and the food preferences of the most abundant suspension feeders, grazers and predators. We selected three intertidal sites on the SW coast of Iceland where we sampled in early September 2004, organic matter sources (POM, SOM and most abundant primary producers, A. nodosum and F. vesciculosus) and the most abundant macrofauna species (barnacles, mussels, gastropods, sponge and crabs). Even though the primary production (Ascophyllum-based) was the same at the three study sites, the isotopic composition of common-among-sites organisms varied due to local differences in the origin of available POM and SOM and in food web structures

    The diet of Weddell seals (Leptonychotes weddellii) in Terra Nova Bay using stable isotope analysis

    Get PDF
    Stable isotope analyses were used to investigate the diet of Weddell seals in Terra Nova Bay (Ross Sea) and the potential variation of their foraging behaviour with age, sex and body mass. For this purpose, skin samples were collected from adult breeding seals and pups, together with muscle samples of their potential prey. Our results showed variation in foraging behavior between age classes, with pups reporting lower δ13C values than adults, while no significant differences in δ15N were recorded. In addition, contrary to expectations, a mixing model analysis showed that adult seals foraged mainly on shallow benthic prey, such as Trematomus spp. (34.1%) and Dissostichus mawsoni (21.1%), rather than on pelagic fish, such as Pleuragramma antarcticum (9.8%). Overall, with this paper we provide novel diet information on a seal colony not previously sampled, adding new insight into the feeding ecology of a top Antarctic predator

    Experimental Studies of Carbon Coatings as Possible Means of Suppressing Beam Induced Electron Multipacting in the CERN SPS

    Get PDF
    Electron cloud build-up is a major limitation for the operation of the SPS with LHC beam above nominal intensity. These beams are envisaged in the frame of the LHC luminosity upgrade and will be available from the new injectors LPSPL and PS2. A series of studies have been conducted in order to identify possible means to suppress electron multipacting by coating the existing SPS vacuum chambers with thin films of amorphous carbon. After a description of the experimental apparatus installed in the SPS, the results of the tests performed with beam in 2008 will be presented

    Impact of a single point mutation on the antimicrobial and fibrillogenic properties of cryptides from human apolipoprotein B

    Get PDF
    Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with antibiofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses. The effects of a single point mutation (Pro → Ala in position 7) on the biological properties of ApoB-derived peptide r(P)ApoBLPro have been evaluated. Although the two versions of the peptide share similar antimicrobial and anti-biofilm properties, only r(P)ApoBLAla peptide was found to exert bactericidal effects. Interestingly, antimicrobial activity of both peptide versions appears to be dependent from their interaction with specific components of bacterial surfaces, such as LPS or LTA, which induce peptides to form β-sheet-rich amyloid-like structures. Altogether, obtained data indicate a correlation between ApoB-derived peptides self-assembling state and their antibacterial activity

    Rapid rotational foam molding of integral skin polypropylene cellular composites

    Get PDF
    Rapid Rotational Foam Molding (RRFM) is a novel patent-pending process that was designed and developed to maximize the synergistic effects resulting from the deliberate combination of extrusion and rotational foam molding and thereby serve as a time-andenergy efficient technology for the manufacture of integral-skin rotationally molded foams of high quality. This thesis presents a thorough study of the scientific and engineering aspects related to the evolution of the RRFM process and its feasibility. This innovative processing technology was assessed and verified through a battery of planned experimental trials conducted utilizing an in-house custom-built industrial-grade lab-scale experimental setup. The experimental trials involved a variety of polypropylene (PP)- based foamable formulations with a chemical blowing agent (CBA) that were compounded and processed by utilizing an extruder and then foamed and injected as a foamed core, instantly, into the cavity of a suitable non-chilled rotationally molded hollow shell made of non-foamed pulverized PP grades. The investigated mold shapes included a cylindrical shaped mold and a rectangular flat shaped mold. The obtained moldings were examined for the quality of the skin surface, the skin-foam interface, and the achieved foam morphologies that were characterized in terms of foam density, average cell size, and average cell density. Optimal processing parameters were successfully determined for three different PP skin-foam formulation combinations. The accomplished reduction in processing time and energy consumption by implementing RRFM were substantial. A variety of processing impediments that hindered the efficiency of the single-charge conventional rotational foam molding practice were resolved by implementing RRFM; these include: the foam/skin invasion into the skin/foam layer of the manufactured article and the premature decomposition of CBA during compounding or subsequent rotational foam molding processing steps

    Summary of the BDS and MDI CLIC08 Working Group

    Get PDF
    This note summarizes the presentations held within the Beam Delivery System and Machine Detector Interface working group of the CLIC08 workshop. The written contributions have been provided by the presenters on a voluntary basis
    corecore